

UNIT-III: Single Variable Calculus

S.NO	Questions	BT	CO	PO
	Part – A(Short answer questions)			
1	Verify Rolle's theorem for $f(x) = 2x^3 + x^2 - 4x - 2$ in $[-\sqrt{3}, \sqrt{3}]$.	L2	CO4	PO1
2	Verify Lagrange's mean value theorem for $f(x) = \log_e x$ in [1, e].	L2	CO4	PO2
3	Expand the function sinx by Maclaurin's series.	L1	CO4	PO1
4	State Cauchy's mean value theorem.	L2	CO4	PO1
5	State Lagrange's mean value theorem and verify Lagrange's theorem for $x^{1/3}$ in (-1, 1).	L1	CO4	PO1
6	Find c of Cauchy's mean value theorem for $f(x) = \sqrt{x}$ and $g(x) = \frac{1}{\sqrt{x}}$ in [a,b] where $0 < a < b$.	L2	CO4	PO2
7	Using Rolles theorem show that $g(x) = 8x^3-6x^2-2x+1$ has a zero between 0 and 1.	L1	CO4	PO2
8	Explain the symmetry about the coordinate axis of curves with an example each.	L1	CO4	PO2
9	Explain about Asymptotes	L1	CO4	PO2
10	How many Asymptotes for the following curve $x^2y^2 - y^2 - 2$	L1	CO4	PO2
S.NO	Part-B(Long answer questions)	BT	CO	PO
1(a)	Verify Rolle's theorem for $f(x) = (x - a)^m (x - b)^n$ where m, n are positive integers in [a, b].	L3	CO4	PO2
1(b)	Prove that $\frac{\pi}{3} - \frac{1}{5\sqrt{3}} > \cos^{-1}(\frac{3}{5}) > \frac{\pi}{3} - \frac{1}{8}$ using Lagrange's mean value theorem.	L3	CO4	PO2
2(a)	Verify generalized mean value theorem for $f(x) = e^x$,	L3	CO4	PO2
	$g(x)=e^{-x}$ in [3,7] and find the value of c.			
2(b)	Verify Rolle's Theorem for the functions $\log \left(\frac{x^2 + ab}{x(a+b)} \right)$ in [a, b], a > 0, b > 0.	L3	CO4	PO3
3(a)	If a < b, prove that $\frac{b-a}{1+b^2}$ < Tan ⁻¹ b - Tan ⁻¹ a < $\frac{b-a}{1+a^2}$ using Lagrange's Mean Value Theorem. Also, deduce the following.	L3	CO4	PO2
	i) $\frac{\pi}{4} + \frac{3}{25} < \text{Tan}^{-1} \frac{4}{3} < \frac{\pi}{4} + \frac{1}{6}$ ii)			

5

MATRICES AND CALCULUS (25MA101)

An Autonomous Institution| Affiliated to JNTUH | Approved by AICTE

	your road and a Accredited by NBA	S NAAC WITH	A Grade	
	iii) $\frac{5\pi + 4}{20} < \text{Tan}^{-1} 2 < \frac{\pi + 2}{4}$			
3(b)	If $f(x) = \log x$ and $g(x) = x^2$ in [a,b] with 1 <a<b .prove="" <math="" cauchys="" mean="" that="" theorem="" using="" value="">\frac{\log b - \log a}{b-a} = \frac{a+b}{2c^2}</a	L2	CO4	PO2
4(a)	Expand $tan^{-1} x$ in powers of (x-1) up to the term containg fourth degree.	L2	CO4	PO2
4(b)	Trace the curve $ay^2 = x^3$	L2	CO4	PO2
5	Trace the curve $x^3+y^3=3axy$	L3	CO4	PO2
6(a)	Trace the curve $x^3+y^3=3axy$ Trace the curve $x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}}$	L4	CO4	PO2
6(b)	Trace the curve $y = c \cosh(\frac{x}{c})$	L4	CO4	PO2